3.8 Proceedings Paper

Depth Completion with Twin Surface Extrapolation at Occlusion Boundaries

出版社

IEEE COMPUTER SOC
DOI: 10.1109/CVPR46437.2021.00261

关键词

-

向作者/读者索取更多资源

The method proposed in the paper models both foreground and background depths in difficult occlusion-boundary regions by using a multi-hypothesis depth representation. It performs twin-surface extrapolation instead of interpolation in these regions. The approach trains a network to simultaneously do surface extrapolation and surface fusion using an asymmetric loss function on a novel twin-surface representation.
Depth completion starts from a sparse set of known depth values and estimates the unknown depths for the remaining image pixels. Most methods model this as depth interpolation and erroneously interpolate depth pixels into the empty space between spatially distinct objects, resulting in depth-smearing across occlusion boundaries. Here we propose a multi-hypothesis depth representation that explicitly models both foreground and background depths in the difficult occlusion-boundary regions. Our method can be thought of as performing twin-surface extrapolation, rather than interpolation, in these regions. Next our method fuses these extrapolated surfaces into a single depth image leveraging the image data. Key to our method is the use of an asymmetric loss function that operates on a novel twin-surface representation. This enables us to train a network to simultaneously do surface extrapolation and surface fusion. We characterize our loss function and compare with other common losses. Finally, we validate our method on three different datasets; KITTI, an outdoor real-world dataset, NYU2, indoor real-world depth dataset and Virtual KITTI, a photo-realistic synthetic dataset with dense groundtruth, and demonstrate improvement over the state of the art.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据