4.5 Article Proceedings Paper

The relationship between inner surface potential and electrokinetic potential from an experimental and theoretical point of view

期刊

ENVIRONMENTAL CHEMISTRY
卷 14, 期 5, 页码 295-309

出版社

CSIRO PUBLISHING
DOI: 10.1071/EN16216

关键词

electrical interfacial layer; haematite; interfacial water; quartz; rutile; sapphire; silica; single-crystal electrodes; streaming potential

资金

  1. Croatian Science Foundation [IP-2014-09-6972]

向作者/读者索取更多资源

The contact of small solid particles and macroscopic flat planes with aqueous electrolyte solutions results in the accumulation of ions at the interface and the formation of the electrical interfacial layer. Analysis of well-defined monocrystal surfaces, which are the building blocks of a single particle, leads to a better understanding of surface reactions and mutual interactions of adjacent crystal planes on average surface properties of particles. We analyse inner surface potential (obtained by single-crystal electrode) and zeta-potential data (obtained by streaming potential measurements) that were obtained on identical samples. Among the systems for which comparable surface and zetapotentials are available, measured inner surface potential data for sapphire (0001), haematite (0001) and rutile (110) show the expected behaviour based on the face-specific surface chemistry model, whereas the slopes for rutile (110) and quartz (0001) do not. Isoelectric points for sapphire (0001), haematite (0001) and rutile (100) are in conflict with the standard model that implies consistent behaviour of surface potential and diffuse layer potential. For the two former systems, previous results from the literature suggest that the charge of interfacial water can explain the discrepancy. The water layer could also play a role for quartz (0001), but in this case, the discrepancy would simply not be noticed, because both point of zero potential and isoelectric point are low. Along with data on silver halides, it can be concluded that six-ring water structures on solids may generate the electrokinetic behaviour that is typical of inert surfaces like Teflon.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据