4.1 Article

Diagnostic Accuracy of Machine Learning Models to Identify Congenital Heart Disease: A Meta-Analysis

期刊

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/frai.2021.708365

关键词

congenital heart disease; machine learning; diagnostic accuracy; meta-analysis; risk of bias

向作者/读者索取更多资源

The review assessed the diagnostic accuracy of machine learning models in detecting congenital heart disease, showing potential for neural networks and others to accurately diagnose CHD. However, limitations include the heterogeneity of diagnostic methods used for training these models and the inclusion of CHD diagnoses in the studies.
Background: With the dearth of trained care providers to diagnose congenital heart disease (CHD) and a surge in machine learning (ML) models, this review aims to estimate the diagnostic accuracy of such models for detecting CHD. Methods: A comprehensive literature search in the PubMed, CINAHL, Wiley Cochrane Library, and Web of Science databases was performed. Studies that reported the diagnostic ability of ML for the detection of CHD compared to the reference standard were included. Risk of bias assessment was performed using Quality Assessment for Diagnostic Accuracy Studies-2 tool. The sensitivity and specificity results from the studies were used to generate the hierarchical Summary ROC (HSROC) curve. Results: We included 16 studies (1217 participants) that used ML algorithm to diagnose CHD. Neural networks were used in seven studies with overall sensitivity of 90.9%(95% CI 85.2-94.5%) and specificity was 92.7% (95% CI 86.4-96.2%). Other ML models included ensemble methods, deep learning and clustering techniques but did not have sufficient number of studies for a meta-analysis. Majority (n=11, 69%) of studies had a high risk of patient selection bias, unclear bias on index test (n=9, 56%) and flow and timing (n=12, 75%) while low risk of bias was reported for the reference standard (n=10, 62%). Conclusion: ML models such as neural networks have the potential to diagnose CHD accurately without the need for trained personnel. The heterogeneity of the diagnostic modalities used to train these models and the heterogeneity of the CHD diagnoses included between the studies is a major limitation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据