4.7 Article

High CO2 Adsorption Capacity and CO2/CH4 Selectivity by Nanocomposites of MOF-199

期刊

ENERGY & FUELS
卷 31, 期 5, 页码 5376-5384

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.energyfuels.6b03347

关键词

-

资金

  1. Research Council of Iran University of Science and Technology (Tehran)

向作者/读者索取更多资源

A nanocomposite of multiwalled carbon nanotubes (MIATCNTs) and the metal-organic framework MOF-199, denoted as CNT@MOF-199, has been synthesized. It was prepared by the incorporation of multiwalled carbon nanotubes into MOF-199, which exhibits an increased micropore volume, enhanced gas storage capacity, and improved stability compared to MOF-199. The adsorption capacities of gas molecules in MOF-199 and CNT@MOF-199 were found to decrease with increasing temperature, indicating the exothermic nature of the adsorption process. Novel functionalized adsorbents were synthesized by impregnation of various amounts (10, 20, and 30 wt %) of piperazine (PZ) on synthetic CNT@MOF-199. Although the surface area, pore size, and pore volume decreased after modification, CNT@MOF-199/PZ exhibited a higher adsorption capacity and selectivity than CNT@MOF-199 at the pressure under study because of the existence of a great affinity between CO2 molecules as a Lewis acid and the basic amine sites on CNT@MOF-199/PZ. The physicochemical properties of the adsorbents were characterized by N-2 adsorption/desorption isotherms, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The highest selectivity was observed at 298 K for CNT@MOF-199/30PZ.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据