4.1 Article

Suppression of Adenosine Deaminase and Xanthine Oxidase Activities by Mineralocorticoid and Glucocorticoid Receptor Blockades Restores Renal Antioxidative Barrier in Oral Contraceptive-Treated Dam

出版社

HINDAWI LTD
DOI: 10.1155/2021/9966372

关键词

-

资金

  1. Association of African Universities [AAU/2017/2018]

向作者/读者索取更多资源

The study demonstrated that postpartum COC treatment induced renal dysfunction through oxidative stress, and blockade of mineralocorticoid receptor or glucocorticoid receptor could alleviate the damage caused by COC.
Objective. We tested the hypothesis that postpartum combined oral contraceptive (COC) treatment would induce oxidative stress via the adenosine deaminase-xanthine oxidase pathway in the kidney. We also sought to determine whether mineralocorticoid receptor (MR) or glucocorticoid receptor (GR ) blockade would suppress the activities of ADA and xanthine oxidase caused by postpartum COC treatment in the kidney. Methods. Twenty-four Wistar dams were randomly assigned to 4 groups (n=6/group). Dams received vehicle (po), COC (1.0 mu g ethinylestradiol and 5.0 mu g levonorgestrel; po), COC with GR blockade (mifepristone; 80.0 mg/kg; po), and COC with MR blockade (spironolactone; 0.25 mg/kg; po) daily between 3rd and 11th week postpartum. Results. Data showed that postpartum COC caused increased plasma creatinine and urea, increased renal triglyceride/high-density lipoprotein ratio, free fatty acid accumulation, alanine aminotransferase, gamma-glutamyltransferase, uric acid, and activities of renal XO and ADA. On the other hand, postpartum COC resulted in decreased plasma albumin, renal glutathione, and Na+-K+-ATPase activity with no effect on lactate production. However, MR or GR blockade ameliorated the alterations induced by postpartum COC treatment. The present results demonstrate that MR or GR blockade ameliorates postpartum COC-induced increased activities of ADA and xanthine oxidase and restores glutathione-dependent antioxidative defense. Conclusion. These findings implicate the involvements of GR and MR in renal dysfunctions caused by COC in dams via disrupted glutathione antioxidative barrier.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据