3.8 Proceedings Paper

Scalable Coverage Path Planning of Multi-Robot Teams for Monitoring Non-Convex Areas

出版社

IEEE
DOI: 10.1109/ICRA48506.2021.9561550

关键词

-

资金

  1. DARPA award [HR00111920030]
  2. NSF [IIS-1927462]

向作者/读者索取更多资源

The SCoPP algorithm is an efficient solution that provides workload balanced plans for a multi-robot system, with five main stages and discrete, computationally efficient characteristics. In a multi-UAV post-flood assessment application, the SCoPP algorithm demonstrates faster mission completion time and good computational scalability.
This paper presents a novel multi-robot coverage path planning (CPP) algorithm - aka SCoPP - that provides a time-efficient solution, with workload balanced plans for each robot in a multi-robot system, based on their initial states. This algorithm accounts for discontinuities (e.g., no-fly zones) in a specified area of interest, and provides an optimized ordered list of way-points per robot using a discrete, computationally efficient, nearest neighbor path planning algorithm. This algorithm involves five main stages, which include the transformation of the user's input as a set of vertices in geographical coordinates, discretization, load-balanced partitioning, auctioning of conflict cells in a discretized space, and a path planning procedure. To evaluate the effectiveness of the primary algorithm, a multi-unmanned aerial vehicle (UAV) post-flood assessment application is considered, and the performance of the algorithm is tested on three test maps of varying sizes. Additionally, our method is compared with a state-of-the-art method created by Guasella et al. Further analyses on scalability and computational time of SCoPP are conducted. The results show that SCoPP is superior in terms of mission completion time; its computing time is found to be under 2 mins for a large map covered by a 150-robot team, thereby demonstrating its computationally scalability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据