4.8 Article

Alternative strategy for a safe rechargeable battery

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 10, 期 1, 页码 331-336

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6ee02888h

关键词

-

向作者/读者索取更多资源

The advent of a Li+ or Na+ glass electrolyte with a cation conductivity sigma(i) 4 10 > 2 S cm(-1) at 25 degrees C and a motional enthalpy Delta H-m = 0.06 eV that is wet by a metallic lithium or sodium anode is used to develop a new strategy for an all-solid-state, rechargeable, metal-plating battery. During discharge, a cell plates the metal of an anode of high-energy Fermi level such as lithium or sodium onto a cathode current collector with a low-energy Fermi level; the voltage of the cell may be determined by a cathode redox center having an energy between the Fermi levels of the anode and that of the cathode current collector. This strategy is demonstrated with a solid electrolyte that not only is wet by the metallic anode, but also has a dielectric constant capable of creating a large electric-double-layer capacitance at the two electrode/electrolyte interfaces. The result is a safe, low-cost, lithium or sodium rechargeable battery of high energy density and long cycle life.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据