4.8 Article

Enhanced photoelectrochemical water splitting of hematite multilayer nanowire photoanodes by tuning the surface state via bottom-up interfacial engineering

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 10, 期 10, 页码 2124-2136

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7ee01475a

关键词

-

资金

  1. Spanish Ministerio de Economia y Competitividad (MINECO) through TNT-FUELS [CTQ2015-71287-R]
  2. Spanish Ministerio de Economia y Competitividad (MINECO) through e-TNT [CTQ2015-71287-R, MAT2014-59961-C2]
  3. Spanish Ministerio de Economia y Competitividad (MINECO) through WINCOST [CTQ2015-71287-R, ENE2016-80788-C5]
  4. BIST Ignite Project inWOC
  5. Generalitat de Catalunya [2014-SGR-797, 2014-SGR-1638]
  6. Severo Ochoa Program (MINECO) [SEV-2013-0295, SEV-2013-0319]
  7. CERCA Programme/Generalitat de Catalunya

向作者/读者索取更多资源

The optimization of multiple interfaces in hematite (alpha-Fe2O3) based composites for photoelectrochemical water splitting to facilitate charge transport in the bulk is of paramount importance to obtain enhanced solar-to-fuel efficiency. Herein, we report the fabrication of ITO/Fe2O3/Fe2TiO5/FeNiOOH multi-layer nanowires and a series of systematic experiments designed to elucidate the mechanism underlying the interfacial coupling effect of the quaternary hematite composite. The hierarchical ITO/Fe2O3/Fe2TiO5/FeNiOOH nanowires display photocurrents that are more than an order of magnitude greater than those of pristine Fe2O3 nanowires (from 0.205 mA cm(-2) to 2.2 mA cm(-2) at 1.23 V vs. RHE and 1 Sun), and higher than those of most of the recently reported state-of-theart hematite composites. Structural, compositional and electrochemical investigations disclose that the surface states (SS) are finely regulated via the atomic addition of an Fe2TiO5 layer and FeNiOOH nanodots, while the upgrading of back contact conductivity and charge donor densities originate from the epitaxial relationship and enhanced Sn doping contributed from the ITO underlayer. We attribute the superior water oxidation performance to the interfacial coupling effect of the ITO underlayer (Sn doping and back contact conductivity promoter), the atomic level Fe2TiO5 coating (Ti doping, surface state density and energy level modulation) and the FeNiOOH nanodot electrocatalyst (regulating surface state energy level). Our work suggests an effective pathway for rational designing of highly active and cost-effective integrated photoanodes for photoelectrochemical water splitting.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据