3.8 Proceedings Paper

Multi-Category Mesh Reconstruction From Image Collections

期刊

出版社

IEEE COMPUTER SOC
DOI: 10.1109/3DV53792.2021.00139

关键词

-

资金

  1. MIUR PRIN project PREVUE: PRediction of activities and Events by Vision in an Urban Environment [E94I19000650001]

向作者/读者索取更多资源

The paper introduces an alternative approach to inferring the textured mesh of objects by training on multiple object categories without specific 3D templates. Experimental results show that the framework can distinguish between different object categories in an unsupervised manner and achieve comparable or state-of-the-art results.
Recently, learning frameworks have shown the capability of inferring the accurate shape, pose, and texture of an object from a single RGB image. However, current methods are trained on image collections of a single category in order to exploit specific priors, and they often make use of category-specific 3D templates. In this paper, we present an alternative approach that infers the textured mesh of objects combining a series of deformable 3D models and a set of instance-specific deformation, pose, and texture. Differently from previous works, our method is trained with images of multiple object categories using only foreground masks and rough camera poses as supervision. Without specific 3D templates, the framework learns category-level models which are deformed to recover the 3D shape of the depicted object. The instance-specific deformations are predicted independently for each vertex of the learned 3D mesh, enabling the dynamic subdivision of the mesh during the training process. Experiments show that the proposed framework can distinguish between different object categories and learn category-specific shape priors in an unsupervised manner. Predicted shapes are smooth and can leverage from multiple steps of subdivision during the training process, obtaining comparable or state-of-the-art results on two public datasets. Models and code are publicly released(1).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据