4.7 Article

Oxidative dehydrogenation of ethane under a cyclic redox scheme - Process simulations and analysis

期刊

ENERGY
卷 119, 期 -, 页码 1024-1035

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2016.11.039

关键词

Ethylene; Cracking; Ethane oxidative dehydrogenation; Chemical looping; Process simulations

资金

  1. Advanced Research Project Agency-Energy (ARPA-E) of the US Department of Energy [DE-AR0000327]
  2. Kenan Institute
  3. EcoCatalytic Technologies LLC

向作者/读者索取更多资源

Steam cracking of ethane is an energy intensive process (15-25 GJ(th)/tonne ethylene) involving significant coke formation and CO2/NOx emissions. We propose an alternative two-step redox (or chemical looping) oxidative dehydrogenation (CL-ODH) scheme where hydrogen, produced from ethane cracking, is selectively oxidized by lattice oxygen from a redox catalyst, in the first step. Regeneration of the lattice oxygen in a subsequent step heats the redox catalyst, with the sensible heat providing the thermal energy needed for the cracking reaction. The overall process provides minimal parasitic energy loss and significantly reduced CO2/NOx formation, while favoring ethylene formation through the removal of hydrogen. In the current study, the CL-ODH process is simulated with ASPEN Plus (R) using experimental data on a Mn-based redox catalyst. The CL-ODH is compared with steam cracking for an ethylene production capacity of 1 million tonne/year. Results indicate that the CL-ODH process, with 85% single-pass ethane conversion, provides 82% reduction in overall energy demand and 82% reduction in CO2 emissions. The overall downstream section consumes approximately 23.5% less energy, with 32.1% less compression work. Increase in the ethane conversion further reduces the energy demand downstream. For every tonne of ethylene, the process has 7.35 GJ(th) excess fuel energy whereas cracking requires an external fuel input of 1.42 GJ(th). (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据