4.7 Article

Energy, exergy and economic assessments of a novel integrated biomass based multigeneration energy system with hydrogen production and LNG regasification cycle

期刊

ENERGY
卷 125, 期 -, 页码 162-177

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2017.02.124

关键词

Biomass; Gasification; Multigeneration; Hydrogen production; Economic and environmental analyses; LNG cold energy

向作者/读者索取更多资源

In this work, a novel integrated biomass based multigeneration energy system is presented and investigated for power, cooling and hydrogen production. The proposed system consists of a combination of biomass integrated gasifier-gas turbine cycle, a Rankine cycle, a cascade organic Rankine cycle, an absorption refrigeration system and a PEM to produce hydrogen, This system uses cold energy of LNG as a thermal sink. Comprehensive thermodynamic and economic analyses as well as an optimization are performed. The effects of operating parameters on thermodynamic performance and total cost rate are investigated for overall system and subsystems. The results show that the fuel mass flow rate is the dominant factor affecting the variation of energy efficiency and total cost rate. An increase in fuel mass flow rate from 4 kg s(-1) to 10 kg s(-1) leads to a decrease of 8.5% and an increase of 122.8% overall energy efficiency and total cost rate, respectively. Also, the largest increase in exergy efficiency occurs when gas turbine inlet temperature increases. The results of optimization showed that the highest net power output, mass flow rate of natural gas delivered to city and the flue gas temperature discharged to the environment are obtained for the exergy efficiency optimal design. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据