4.7 Article

Photovoltaic fault detection algorithm based on theoretical curves modelling and fuzzy classification system

期刊

ENERGY
卷 140, 期 -, 页码 276-290

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2017.08.102

关键词

Photovoltaic faults; Fault detection; Fuzzy logic; PV hot spot detection; LabVIEW

向作者/读者索取更多资源

This work proposes a fault detection algorithm based on the analysis of the theoretical curves which describe the behavior of an existing PV system. For a given set of working conditions, solar irradiance and PV modules' temperature, a number of attributes such as voltage ratio (VR) and power ratio (PR) are simulated using virtual instrumentation (VI) LabVIEW software. Furthermore, a third order polynomial function is used to generate two detection limits for the VR and PR ratios obtained using VI LabVIEW simulation tool. The high and low detection limits are compared with measured data taken from 1.1 kWp PV system installed at the University of Huddersfield, United Kingdom. Samples lie out of the detection limits are processed by a fuzzy logic classification system which consists of two inputs and one output membership function. In this paper, PV faults corresponds to a short circuited PV module. The obtained results show that the fault detection algorithm can accurately detect different faults occurring in the PV system, where the maximum detection accuracy of before considering the fuzzy logic system is equal to 95.27%. However, the fault detection accuracy is increased up to a minimum value of 98.8% after considering the fuzzy system. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据