4.7 Article Proceedings Paper

Coupling waste heat extraction by phase change materials with superheated steam generation in the steel industry

期刊

ENERGY
卷 137, 期 -, 页码 1107-1118

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2017.04.051

关键词

Energy recovery; Phase change material; Thermal power fluctuation; Superheated steam; Steel industry

向作者/读者索取更多资源

To allow a better exergy exploitation than the current state-of-the-art waste heat to power solutions in the steel industry, a new type of energy recovery system based on Phase Change Materials is proposed. In particular, the use of high temperature PCMs evolves from simply smoothing off gas temperature, as in the most recent studies for energy recovery from electric arc furnaces, to generating constant superheated steam able to feed the downstream turbine nearly at nominal load. This result is achieved by introducing an auxiliary section between the PCM Section and the steam generation one, which provides the auxiliary heat needed to level the thermal content of off gas. The auxiliary heat is extracted from the PCM units by a heat transfer fluid flowing across the inner tube of each PCM container. Different models to properly size and simulate the operations of the proposed energy recovery system have been developed and integrated. Results show how the size of the steam generator and the turbine can be reduced of about 41% with respect to traditional solutions, while increasing electric power production by 22% thanks to the reduced fluctuation in steam parameters at the turbine inlet, which leads to a greater overall efficiency. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据