4.7 Article

Thermal investigation of a PEM fuel cell with cooling flow field

期刊

ENERGY
卷 134, 期 -, 页码 61-73

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2017.05.151

关键词

Coolant channel; Gas channel; Liquid cooling; Thermal distribution; Net power; Parasitic load

向作者/读者索取更多资源

Efficient operation of a proton exchange membrane fuel cell (PEMFC) is hugely dependent on an effective cooling system. Nonuniformity of temperature causes a varying rate of electrochemical reactions at different places causing hot spot formation which decreases the PEM fuel cell lifetime. In this study, PEMFC is simulated with cooling flow field simultaneously. Two conventional serpentine and parallel types of flow field of cooling plates are considered and compared with typical isothermal model (without cooling flow field) used in Ansys Fluent software. This comparison based on effective physical parameters such as pressure drop, the minimum and maximum temperature gradient, Index of uniform temperature (IUT) and etc. In the same working conditions, maximum temperature ratio between parallel and serpentine model is 1.0028 but for index of uniform temperature this study revealed 24% improvement for serpentine cooling flow field than parallel one. The results show that changing the heat transfer rate can be effective on the performance of PEM fuel cell and PEMFC with serpentine cooling flow field compared with parallel one. Serpentine flow field has better cooling performance with regard to effective physical parameters. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据