4.5 Article

A Single-Phase Multilevel PV Generation System with an Improved Ripple Correlation Control MPPT Algorithm

期刊

ENERGIES
卷 10, 期 12, 页码 -

出版社

MDPI
DOI: 10.3390/en10122037

关键词

photovoltaic; multilevel inverter; single-phase converter; maximum power point tracking (MPPT); ripple correlation control (RCC); harmonics

向作者/读者索取更多资源

The implementation of maximum power point tracking (MPPT) schemes by the ripple correlation control (RCC) algorithm is presented in this paper. A reference is made to single-phase single-stage multilevel photovoltaic (PV) generation systems, when the inverter input variables (PV voltage and PV current) have multiple low-frequency (ripple) harmonics. The harmonic analysis is carried out with reference to a multilevel configuration consisting of an H-bridge inverter and level doubling network (LDN) cell, leading to the multilevel inverter having double the output voltage levels as compared to the basic H-bridge inverter topology (i.e., five levels vs. three levels). The LDN cell is basically a half-bridge fed by a floating capacitor, with self-balancing voltage capability. The multilevel configuration introduces additional PV voltage and current low-frequency harmonics, perturbing the basic implementation of the RCC scheme (based on the second harmonic component), leading to malfunctioning. The proposed RCC algorithm employs the PV current and voltage harmonics at a specific frequency for the estimation of the voltage derivative of power dP/dV (or dI/dV), driving the PV operating point toward the maximum power point (MPP) in a faster and more precise manner. The steady-state and transient performances of the proposed RCC-MPPT schemes have been preliminarily tested and compared using MATLAB/Simulink. Results have been verified by experimental tests considering the whole multilevel PV generation system, including real PV modules, multilevel insulated-gate bipolar transistor (IGBT) inverters, and utility grids.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据