4.5 Article

Data-Reconciliation Based Fault-Tolerant Model Predictive Control for a Biomass Boiler

期刊

ENERGIES
卷 10, 期 2, 页码 -

出版社

MDPI
DOI: 10.3390/en10020194

关键词

data reconciliation; model predictive control; fault-tolerant contro; BioGrate boiler

向作者/读者索取更多资源

This paper presents a novel, effective method to handle critical sensor faults affecting a control system devised to operate a biomass boiler. In particular, the proposed method consists of integrating a data reconciliation algorithm in a model predictive control loop, so as to annihilate the effects of faults occurring in the sensor of the flue gas oxygen concentration, by feeding the controller with the reconciled measurements. Indeed, the oxygen content in flue gas is a key variable in control of biomass boilers due its close connections with both combustion efficiency and polluting emissions. The main benefit of including the data reconciliation algorithm in the loop, as a fault tolerant component, with respect to applying standard fault tolerant methods, is that controller reconfiguration is not required anymore, since the original controller operates on the restored, reliable data. The integrated data reconciliation-model predictive control (MPC) strategy has been validated by running simulations on a specific type of biomass boilerthe KPA Unicon BioGrate boiler.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据