4.7 Article

Comparative Transcriptomic Analyses Provide Insights into the Enzymatic Browning Mechanism of Fresh-Cut Sand Pear Fruit

期刊

HORTICULTURAE
卷 7, 期 11, 页码 -

出版社

MDPI
DOI: 10.3390/horticulturae7110502

关键词

fresh-cut sand pear; enzymatic browning; molecular breeding; lncRNA; PPO activity

资金

  1. National Key Research and Development Program [2019YFD1001400]
  2. China Agriculture Research System of MOF and MARA [CARS-28]
  3. Hubei Agricultural Science and Technology Innovation Center [2020-620-000-002-05]

向作者/读者索取更多资源

This study investigated the molecular mechanisms of enzymatic browning in two sand pear genotypes through SMRT-seq and RNA-seq analysis, identifying key genes and lncRNAs involved in the process. The results provide insights into the regulation of enzymatic browning in sand pear flesh at the molecular level.
Pear (Pyrus spp.) is one of the most commonly consumed temperate fruits, having considerable economic and health importance. Fresh-cut or processed pear fruits are prone to browning because of the abundant phenolic compounds; however, little is known about the molecular mechanisms underlying enzymatic browning of fresh-cut sand pear fruit. In this study, fruits of two sand pear genotypes (low browning cultivar 'Eli No.2 ' and high browning cultivar 'Weiningdahuangli') were used to analyze the molecular mechanism of enzymatic browning by SMRT-seq and RNA-seq. The results generated 69,122 consensus isoforms, 21,336 new transcripts, 7105 alternative splicing events, and 254 long non-coding RNAs (lncRNAs). Furthermore, five genes related to enzymatic browning were predicted to be targets of six lncRNAs, and 9930 differentially expressed genes (DEGs) were identified between two different flesh browning cultivars. Meanwhile, most DEGs (e.g., PAL, 4CL, CAD, CCR, CHS, and LAR) involved in the phenylpropanoid biosynthesis pathway were up-regulated, and the expression of PPO and POD were highly expressed in the high-browning cultivar. Interestingly, the transcript level of PbrPPO4 (Pbr000321.4) was significantly higher than other PPO and POD genes, and a high level of total polyphenol and PPO activity were observed in the high browning cultivar. We found that the expression of lncRNA PB.156.1 was significantly positively correlated with the target gene PbrPPO4 (Pbr000321.4). The results suggest that PbrPPO4 might act as a major contributor and a key enzyme encoding gene in regulating fresh-cut sand pear fruit enzymatic browning; the expression of PbrPPO4 was probably regulated by lncRNA PB.156.1. Altogether, the transcriptomic and physiological analyses expand the knowledge of sand pear flesh enzymatic browning at the molecular level and provide a foundation for germplasm resources for molecular breeding of high polyphenol and low browning cultivars in sand pears.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据