3.8 Proceedings Paper

Detecting Invisible People

出版社

IEEE
DOI: 10.1109/ICCV48922.2021.00316

关键词

-

资金

  1. Defense Advanced Research Projects Agency (DARPA) [HR001117C0051]
  2. National Science Foundation (NSF) [IIS-1618903]

向作者/读者索取更多资源

The research introduces a new approach to detecting invisible objects, focusing on the case of people. By treating occluded object detection as a short-term forecasting challenge and building dynamic models, the tracking and detection of occluded objects is achieved. The performance improvement is significant compared to existing technologies.
Monocular object detection and tracking have improved drastically in recent years, but rely on a key assumption: that objects are visible to the camera. Many offline tracking approaches reason about occluded objects post-hoc, by linking together tracklets after the object re-appears, making use of reidentification (ReID). However, online tracking in embodied robotic agents (such as a self-driving vehicle) fundamentally requires object permanence, which is the ability to reason about occluded objects before they re-appear. In this work, we re-purpose tracking benchmarks and propose new metrics for the task of detecting invisible objects, focusing on the illustrative case of people. We demonstrate that current detection and tracking systems perform dramatically worse on this task. We introduce two key innovations to recover much of this performance drop. We treat occluded object detection in temporal sequences as a short-term forecasting challenge, bringing to bear tools from dynamic sequence prediction. Second, we build dynamic models that explicitly reason in 3D from monocular videos without calibration, using observations produced by monocular depth estimators. To our knowledge, ours is the first work to demonstrate the effectiveness of monocular depth estimation for the task of tracking and detecting occluded objects. Our approach strongly improves by 11.4% over the baseline in ablations and by 5.0% over the state-of-the-art in F1 score.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据