3.8 Proceedings Paper

OCT chorio-retinal segmentation with adversarial loss

出版社

IEEE
DOI: 10.1109/DICTA52665.2021.9647099

关键词

generative adversarial networks; segmentation; deep learning; OCT; neural networks

向作者/读者索取更多资源

Deep learning methods provide state-of-the-art performance for semantic segmentation of the retina and choroid in OCT images, but challenges remain for high difficulty scans. Generative adversarial networks (GANs) offer benefits for learning complex data distributions, and incorporating adversarial loss in segmentation can improve performance.
Deep learning methods provide state-of-the-art performance for the semantic segmentation of the retina and choroid in optical coherence tomography (OCT) images, enabling rapid, accurate and automatic analyses. However, high difficulty scans can still pose a problem even for the current state-of-the-art methods. Generative adversarial networks (GANs), are a family of deep learning methods that provide significant benefits for several applications due to their ability to learn complex data distributions, such as those of large image datasets. Segmentation is one of these applications that has been investigated in several modalities including retinal fundus image analysis, resulting in performance improvements when incorporating an adversarial loss for segmentation. However, the application of GAN-based segmentation to OCT images has not been investigated in detail and has not been studied at all in the context of choroidal segmentation. In this study, we investigate the use of a GAN to perform semantic segmentation of the retina and choroid in OCT images, by replacing the traditional segmentation loss with an adversarial loss. A detailed analysis of important training parameters and network architecture choices is provided to 1) better understand their behavior and 2) to optimize performance for chorio-retinal segmentation in OCT images. A key difference of this study is that, by considering the loss in isolation and comparing to traditional segmentation losses using an identical segmentation network, an unbiased and transparent comparison is performed. Using an optimized adversarial loss, strong performance is observed, providing near comparable performance to traditional segmentation losses. The results from this experiment provide a strong foundation for future work with GAN-based OCT retinal and choroidal segmentation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据