4.2 Article

Simulation of seawater intrusion in the Nile Delta aquifer under the conditions of climate change

期刊

HYDROLOGY RESEARCH
卷 47, 期 6, 页码 1198-1210

出版社

IWA PUBLISHING
DOI: 10.2166/nh.2016.157

关键词

climate change; Nile Delta aquifer; pumping; sea level rise; seawater intrusion

向作者/读者索取更多资源

The problem of seawater intrusion is encountered in almost all coastal aquifers. Because of its higher density, the seawater migrates inland into freshwater aquifers even without any pumping activities. Excessive pumping of groundwater would accelerate seawater intrusion. Climate change and sea level rise represent critical parameters affecting the rate and degree of seawater intrusion. In this paper, a coupled transient finite element model for simulation of fluid flow and solute transport in saturated and unsaturated soils (2D-FEST) is employed to study the seawater intrusion in the Nile Delta aquifer. The results of the current model are compared to results of SEAWAT for model verification. The (2D-FEST) model is used to investigate seawater intrusion considering the impacts of climate change. Three scenarios are studied: (a) rise in sea level, (b) decline of the piezometric head at the land side due to excessive pumping, and (c) combination of sea level rise and decline of the piezometric head. The results show that the rise in the sea level has a significant effect on the position of the transition zone. The third scenario represents the worst case under which the groundwater quality would deteriorate in large areas of the Nile Delta aquifer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据