4.4 Article

Development and characterization of a predictive microCT-based non-union model in Fischer F344 rats

期刊

ARCHIVES OF ORTHOPAEDIC AND TRAUMA SURGERY
卷 142, 期 4, 页码 579-590

出版社

SPRINGER
DOI: 10.1007/s00402-020-03680-4

关键词

Fracture healing; Delayed union; Non-union; microCT; Osteotomy

资金

  1. AO Foundation

向作者/读者索取更多资源

This study aimed to develop and characterize a rat non-union model using internal plate fixation and microCT evaluation. The results showed that microCT could accurately predict bone formation capacity at early time points, and that reducing plate thickness improved bone healing.
Introduction Non-unions remain a clinical problem and are characterised by the failure to heal after a defined period of time. Current preclinical non-union models apply a wide variety of techniques to diminish intrinsic healing potential deviating from the clinical situation. The aim of this study was to develop and characterise a non-union model in rats using internal plate fixation without the need for additional healing insults, whereby bone healing can be longitudinally assessed using microCT. It was hypothesized that healing/non-unions can be accurately predicted at early time points by microCT. Materials and methods Female, skeletally mature Fischer F344 rats received a 2 mm or 1 mm femoral osteotomy, stabilized with either a 2 mm thick plate or a 1.25 mm thick plate. Healing was monitored by microCT over 14 weeks and histological analysis at euthanasia. The mechanical environment was characterised using finite element (FE) modelling and biomechanical testing. Results The majority of animals receiving the 2 mm thick plate displayed poor healing responses in both the 2 mm and 1 mm defect size groups. Bone and cartilage formation were markedly improved using the 1.25 mm thick plate. MicroCT could accurately predict bone forming capacity at early time points (3-4 weeks). Conclusions The 2 mm thick plating system confers poor healing responses in female Fischer F344 rats, comparable to atrophic non-unions. By reducing plate thickness to increase interfragmentary strain within the defect site healing is improved, leading to borderline healing situations or increased abundance of cartilage tissue present in the defect site with ultimate failure to bridge the defect (hypertrophic non-union). Furthermore, microCT can reliably identify delayed/non-healing animals within 4 weeks, thereby allowing their selective targeting for the testing of novel, clinically relevant treatment strategies in different clinical situations aimed at restoring impaired bone healing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据