4.2 Article

Experimental Investigation on the Mechanical Properties of Natural Fiber Reinforced Concrete

期刊

JOURNAL OF RENEWABLE MATERIALS
卷 10, 期 5, 页码 1307-1320

出版社

TECH SCIENCE PRESS
DOI: 10.32604/jrm.2022.017513

关键词

Sisal fiber reinforced concrete; coir fiber reinforced concrete; hybrid fibers; compressive and tensile strength

资金

  1. Yunnan Science and Technology Major Project, Yunnan China [202002AE090010]

向作者/读者索取更多资源

In recent years, the addition of natural fibers to high strength concrete has gained attention in the field of building materials. Using specific lengths and concentrations of natural fibers can increase the compressive and split tensile strength of concrete.
Recently, addition of various natural fibers to high strength concrete has aroused great interest in the field of building materials. This is because natural fibers are much cheaper and locally available, as compare to synthetic fibers. Keeping in view, this current research conducted mainly focuses on the static properties of hybridized (sisal/coir), sisal and coir fiber-reinforced concrete. Two types of natural fibers sisal and coir were used in the experiment with different lengths of 10, 20 and 30 mm and various natural fiber concentrations of 0.5%, 1.0%, and 1.5% by mass of cement, to investigate the static properties of sisal fiber reinforced concrete (SFRC), coir fiber reinforced concrete (CFRC) and hybrid fiber reinforced concrete (HFRC). The results indicate that HFRC has increased the compressive strength up to 35.98% with the length of 20 mm and with 0.5% concentration, while the CFRC and SFRC with the length of 10 mm and with 1% concentration have increased the compressive strength up to 33.94% and 24.86%, respectively. On another hand, the split tensile strength was increased by HFRC with the length of 20 mm and with 1% concentration, CFRC with the length of 10 mm and with 1.5% concentration, and SFRC with the length of 30 mm and with 1% concentration have increased up to 25.48%, 24.56% and 11.80%, respectively, while the HFRC with the length of 20 mm and with 0.5% concentration has increased the compressive strength of concrete but has decreased the split tensile strength up to 2.28% compared to PC. Overall, using the HFRC with the length of 20 mm and with 1% concentration provide the maximum output in terms of split tensile strength.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据