4.7 Article

PyCO2SYS v1.8: marine carbonate system calculations in Python

期刊

GEOSCIENTIFIC MODEL DEVELOPMENT
卷 15, 期 1, 页码 15-43

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/gmd-15-15-2022

关键词

-

向作者/读者索取更多资源

This article introduces PyCO2SYS, a Python package for calculating the marine carbonate system. The authors explain the differences and improvements of PyCO2SYS compared to existing software and validate its reliability and accuracy through tests and comparisons. The article also discusses future developments and the potential applications of PyCO2SYS.
Oceanic dissolved inorganic carbon (T-C) is the largest pool of carbon that substantially interacts with the atmosphere on human timescales. Oceanic T-C is increasing through uptake of anthropogenic carbon dioxide (CO2), and seawater pH is decreasing as a consequence. Both the exchange of CO2 between the ocean and atmosphere and the pH response are governed by a set of parameters that interact through chemical equilibria, collectively known as the marine carbonate system. To investigate these processes, at least two of the marine carbonate system's parameters are typically measured - most commonly, two from T-C, total alkalinity (A(T)), pH, and seawater CO2 fugacity (f(CO2); or its partial pressure, p(CO2), or its dry-air mole fraction, x(CO2)) - from which the remaining parameters can be calculated and the equilibrium state of seawater solved. Several software tools exist to carry out these calculations, but no fully functional and rigorously validated tool written in Python, a popular scientific programming language, was previously available. Here, we present PyCO2SYS, a Python package intended to fill this capability gap. We describe the elements of PyCO2SYS that have been inherited from the existing CO2SYS family of software and explain subsequent adjustments and improvements. For example, PyCO2SYS uses automatic differentiation to solve the marine carbonate system and calculate chemical buffer factors, ensuring that the effect of every modelled solute and reaction is accurately included in all its results. We validate PyCO2SYS with internal consistency tests and comparisons against other software, showing that PyCO2SYS produces results that are either virtually identical or different for known reasons, with the differences negligible for all practical purposes. We discuss insights that guided the development of PyCO2SYS: for example, the fact that the marine carbonate system cannot be unambiguously solved from certain pairs of parameters. Finally, we consider potential future developments to PyCO2SYS and discuss the outlook for this and other software for solving the marine carbonate system. The code for PyCO2SYS is distributed via GitHub (https://github.com/mvdh7/PyCO2SYS, last access: 23 December 2021) under the GNU General Public License v3, archived on Zenodo , and documented online (https://pyco2sys.readthedocs.io/en/latest/, last access: 23 December 2021).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据