4.7 Article

Crystal orientation-dependent fatigue characteristics in micrometer-sized single-crystal silicon

期刊

MICROSYSTEMS & NANOENGINEERING
卷 2, 期 -, 页码 -

出版社

SPRINGERNATURE
DOI: 10.1038/micronano.2016.27

关键词

fatigue; fracture; lifetime; MEMS; reliability; resonator; single-crystal silicon

向作者/读者索取更多资源

Repetitive bending fatigue tests were performed using five types of single-crystal silicon specimens with different crystal orientations fabricated from {100} and {110} wafers. Fatigue lifetimes in a wide range between 10(0) and 10(10) were obtained using fan-shaped resonator test devices. Fracture surface observation via scanning electron microscope (SEM) revealed that the {111} plane was the primary fracture plane. The crack propagation exponent n was estimated to be 27, which was independent of the crystal orientation and dopant concentration; however, it was dependent on the surface conditions of the etched sidewall. The fatigue strengths relative to the deflection angle were orientation dependent, and the ratios of the factors obtained ranged from 0.86 to 1.25. The strength factors were compared with those obtained from finite element method stress analyses. The calculated stress distributions showed strong orientation dependence, which was well-explained by the elastic anisotropy. The comparison of the strength factors suggested that the first principal stress was a good criterion for fatigue fracture. We include comparisons with specimens tested in our previous report and address the tensile strength, initial crack length, volume effect, and effects of surface roughness such as scallops.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据