4.3 Article

Warfarin Pharmacogenomics for Precision Medicine in Real-Life Clinical Practice in Southern Africa: Harnessing 73 Variants in 29 Pharmacogenes

期刊

OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY
卷 26, 期 1, 页码 35-50

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/omi.2021.0199

关键词

warfarin; Africa; pharmacogenomics; personalized medicine; gene-drug interaction; genetic variation; drug transporters

资金

  1. Bindura University of Science Education (BUSE)
  2. South African Medical Research Council (SAMRC)
  3. National Research Foundation (NRF) of South Africa
  4. SAMRC through its Division of Research Capacity Development under the Bongani Mayosi National Health Scholarship Programme from Public Health Enhancement Fund/South African National Department of Health

向作者/读者索取更多资源

Pharmacogenomics is important for modern therapeutics worldwide, but its application in African clinical practice is limited. African patients often have multiple comorbidities, yet current research primarily focuses on controlled medical settings.
Pharmacogenomics is universally relevant for worldwide modern therapeutics and yet needs further development in resource-limited countries. While there is an abundance of genetic association studies in controlled medical settings, there is a paucity of studies with a naturalistic design in real-life clinical practice in patients with comorbidities and under multiple drug treatment regimens. African patients are often burdened with communicable and noncommunicable comorbidities, yet the application of pharmacogenomics in African clinical settings remains limited. Using warfarin as a model, this study aims at minimizing gaps in precision/personalized medicine research in African clinical practice. We present, therefore, pharmacogenomic profiles of a cohort of 503 black Africans (n = 252) and Mixed Ancestry (n = 251) patients from Southern Africa, on warfarin and co-prescribed drugs in a naturalized noncontrolled environment. Seventy-three (n = 73) single nucleotide polymorphisms (SNPs) in 29 pharmacogenes were characterized using a combination of allelic discrimination, Sanger sequencing, restriction fragment length polymorphism, and Sequenom Mass Array. The common comorbidities were hypertension (43-46%), heart failure (39-45%), diabetes mellitus (18%), arrhythmia (25%), and HIV infection (15%). Accordingly, the most common co-prescribed drugs were antihypertensives, antiarrhythmic drugs, antidiabetics, and antiretroviral therapy. We observed marked variation in major pharmacogenes both at interethnic levels and within African subpopulations. The Mixed Ancestry group presented a profile of genetic variants reflecting their European, Asian, and African admixture. Precision medicine requires that African populations begin to capture their own pharmacogenetic SNPs as they cannot always infer with absolute certainty from Asian and European populations. In the current historical moment of the COVID-19 pandemic, we also underscore that the spectrum of drugs interacting with warfarin will likely increase, given the systemic and cardiovascular effects of COVID-19, and the anticipated influx of COVID-19 medicines in the near future. This observational clinical pharmacogenomics study of warfarin, together with past precision medicine research, collectively, lends strong support for incorporation of pharmacogenetic profiling in clinical settings in African patients for effective and safe administration of therapeutics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据