4.2 Article

Green synthesis of a CuO/rGO nanocomposite using a Terminalia arjuna bark extract and its catalytic activity for the purification of water

期刊

MATERIALS ADVANCES
卷 3, 期 4, 页码 2170-2184

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1ma00993a

关键词

-

向作者/读者索取更多资源

In this study, a CuO/rGO nanocomposite was successfully synthesized using Terminalia arjuna bark extract, and characterized by various analytical methods. The nanocomposite exhibited efficient selective adsorption of Bi3+ and Cd2+ ions, and demonstrated good degradation performance in photocatalytic reactions.
In the present study, biogenic synthesis of a CuO/rGO nanocomposite was carried out successfully using Terminalia arjuna bark extract. Various analytical methods such as UV-vis, PL, FTIR, XRD, FESEM, EDS, HRTEM and XPS were used for the characterization of the synthesized CuO/rGO nanocomposites. Furthermore, the as-prepared nanocomposite samples were efficaciously utilized for selective removal of Bi3+ and Cd2+ ions from aqueous solution. Prior to adsorption investigations, the contact time, initial metal ion concentration, pH, and amount of adsorbent were all tuned. The removal effectiveness of one of the nanocomposites, CG-V for Bi3+ and Cd2+ ions from the aqueous system was determined to be 98% and 91%, respectively. The maximum adsorption capacity of the nanocomposite for Bi3+ and Cd2+ was found to be 138.8 and 112.4 mg g(-1), respectively. The photocatalytic studies revealed that 98% of eriochrome black T (EBT) and 90% of methyl orange (MO) dye were degraded in 80 and 100 min, respectively. Adsorption isotherm analysis and kinetic investigations were also carried out to determine the mechanism and adsorption kinetics which followed pseudo second order. This research is expected to provide insights into the biogenic synthesis of nanocomposites and their applications in environmental remediation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据