4.2 Article

Role of carbon quantum dot for enhanced performance of photo-absorption in Cu2CoSnS4 superstrate solar cell device

期刊

MATERIALS ADVANCES
卷 3, 期 5, 页码 2405-2416

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1ma01117k

关键词

-

向作者/读者索取更多资源

This study reports the fabrication and characterization of superstrate type ITO/CdS/Cu2CoSnS4 (CCTS) and Cu2CoSnS4:CQD (CCTS:CQDs)/Al thin-film solar cells using spray pyrolysis. The crystallization performance, phase purity, and band gap of the CCTS and CCTS:CQD thin films were investigated. The comparison of efficiency between the two devices showed that the CCTS:CQD device exhibited improved performance. Impedance measurement was performed to analyze the interface between contacts and the bulk material. These results suggest that carbon quantum-dot-based chalcogenides have potential as candidates for future low-cost large-area inorganic solar cells.
In the present work, superstrate type ITO/CdS/Cu2CoSnS4 (CCTS) and Cu2CoSnS4:CQD (CCTS:CQDs)/Al thin-film solar cells are reported. An attempt was made to fabricate CCTS and CCTS:CQD thin-film absorbers using spray pyrolysis at a deposition temperature of 170 degrees C. In order to increase the crystallization performance, thin films were annealed at 250 degrees C for 30 min under N-2 atmosphere using rapid thermal annealing. The XRD results showed the formation of the stannite structure for both CCTS and CCTS:CQD and the phase purity was confirmed by Raman analysis. The XPS spectra indicated oxidation states of Cu, Co, Sn, and S to be Cu+, Co2+, Sn4+, and S2- in CCTS and CCTS:CQD films. The band gap of the films was obtained as 1.35 and 1.26 eV for CCTS and CCTS:CQD. The CCTS:CQD device shows an improved efficiency (0.07%) over the CCTS device (0.003%). Impedance measurement was performed to analyze the interface between contacts and the bulk. These results showed that carbon quantum-dot-based chalcogenides can effectively absorb UV-visible photons and separate electrons and holes as potential candidates for future low-cost large-area inorganic solar cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据