4.2 Article

Microwave-optical coupling via Rydberg excitons in cuprous oxide

期刊

PHYSICAL REVIEW RESEARCH
卷 4, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevResearch.4.013031

关键词

-

向作者/读者索取更多资源

Exciton-mediated coupling between microwave and optical fields has been observed in cuprous oxide at low temperatures. Rydberg excitonic states with different principal quantum numbers were observed using one-photon and two-photon spectroscopy. The absorption line shape and coherent second harmonic were found to be significantly affected by the addition of a microwave field near resonance with an excitonic state. The results are in agreement with a model based on intraband electric dipole transitions between Rydberg exciton states.
We report exciton-mediated coupling between microwave and optical fields in cuprous oxide (Cu2O) at low temperatures. Rydberg excitonic states with principal quantum number up to n = 12 were observed at 4 K using both one-photon (absorption) and two-photon (second harmonic generation) spectroscopy. Near resonance with an excitonic state, the addition of a microwave field significantly changed the absorption line shape, and added sidebands at the microwave frequency to the coherent second harmonic. Both effects showed a complex dependence on n and angular momentum l. All of these features are in semiquantitative agreement with a model based on intraband electric dipole transitions between Rydberg exciton states. With a simple microwave antenna we already reach a regime where the microwave coupling (Rabi frequency) is comparable to the nonradiatively broadened linewidth of the Rydberg excitons. The results provide an additional way to manipulate excitonic states, and open up the possibility of a cryogenic microwave to optical transducer based on Rydberg excitons.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据