4.6 Article

Supersolid-like solitons in a spin-orbit-coupled spin-2 condensate

期刊

PHYSICAL REVIEW A
卷 105, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.105.023303

关键词

-

资金

  1. Science and Engineering Research Board, Department of Science and Technology, Government of India [ECR/2017/001436]
  2. CNPq (Brazil) [301324/2019-0]
  3. ICTPSAIFR-FAPESP (Brazil) [2016/01343-7]

向作者/读者索取更多资源

We studied the emergence of supersolid-like crystalline structures in a quasi-two-dimensional spin-orbit coupled spin-2 condensate. Different strengths of spin-orbit coupling and interatomic interactions led to a variety of nontrivial density patterns in the solutions.
We study supersolid-like crystalline structures emerging in the stationary states of a quasi-two-dimensional spin-orbit (SO)-coupled spin-2 condensate in the ferromagnetic, cyclic, and antiferromagnetic phases by solving a mean-field model. Interplay of different strengths of SO coupling and interatomic interactions gives rise to a variety of nontrivial density patterns in the emergent solutions. For small SO-coupling strengths gamma (gamma approximate to 0.5), the ground state is an axisymmetric multiring soliton for polar, cyclic, and weakly ferromagnetic interactions, whereas for stronger ferromagnetic interactions a circularly asymmetric soliton emerges as the ground state. Depending on the values of interaction parameters, with an increase in SO-coupling strength, a stripe phase may also emerge as the ground state for polar and cyclic interactions. For intermediate values of SO-coupling strength (gamma approximate to 1), in addition to these solitons, one could have a quasidegenerate triangular-lattice soliton in all magnetic phases. On further increasing the SO-coupling strength (gamma (sic) 4), a square-lattice and a superstripe soliton emerge as quasidegenerate states. The emergence of all these solitons can be inferred from a study of solutions of the single-particle Hamiltonian.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据