4.7 Article Data Paper

High-resolution biogenic global emission inventory for the time period 2000-2019 for air quality modelling

期刊

EARTH SYSTEM SCIENCE DATA
卷 14, 期 1, 页码 251-270

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/essd-14-251-2022

关键词

-

资金

  1. ECMWF CAMS_81 Global and Regional Emission project

向作者/读者索取更多资源

This study presents three newly developed high-resolution global emission inventories of BVOC species, which are important for accurately representing atmospheric composition in air quality models. The inventories are calculated based on meteorological reanalysis data and take into account the impact of land cover changes on emissions.
Biogenic volatile organic compounds (BVOCs) emitted from the terrestrial vegetation into the Earth's atmosphere play an important role in atmospheric chemical processes. Gridded information of their temporal and spatial distribution is therefore needed for proper representation of the atmospheric composition by the air quality models. Here we present three newly developed high-resolution global emission inventories of the main BVOC species including isoprene, monoterpenes, sesquiterpenes, methanol, acetone and ethene. Monthly mean and monthly averaged daily profile emissions were calculated by the Model of Emission of Gases and Aerosols from Nature (MEGANv2.1) driven by meteorological reanalyses of the European Centre for Medium-Range Weather Forecasts for the period of 2000-2019. The dataset CAMS-GLOB-BIOv1.2 is based on ERA-Interim meteorology (0.5 degrees x 0.5 degrees horizontal spatial resolution); the datasets CAMS-GLOB-BIOv3.0 and v3.1 were calculated with ERA5 (both 0.25 degrees x 0.25 degrees horizontal spatial resolution). Furthermore, European isoprene emission potential data were updated using high-resolution land cover maps and detailed information of tree species composition and emission factors from the EMEP MSC-W model system. Updated isoprene emissions are included in the CAMS-GLOB-BIOv3.1 dataset. The effect of annually changing land cover on BVOC emissions is captured by the CAMS-GLOB-BIOv3.0 as it was calculated with land cover data provided by the Climate Change Initiative of the European Space Agency (ESA-CCI). The global total annual BVOC emissions averaged over the simulated period vary between the datasets from 424 to 591 Tg(C)yr(-1), with isoprene emissions from 299.1 to 440.5 Tg(isoprene)yr(-1). Differences between the datasets and variation in their emission estimates provide the emission uncertainty range and the main sources of uncertainty, i.e. meteorological inputs, emission potential data and land cover description. The CAMS-GLOB-BIO time series of isoprene and monoterpenes were compared to other available data. There is a general agreement in an interannual variability in the emission estimates, and the values fall within the uncertainty range. The CAMS-GLOB-BIO datasets (CAMS-GLOB-BIOv1.2, , Sindelarova et al., 2021a; CAMS-GLOB-BIOv3.0, , Sindelarova et al., 2021b; CAMS-GLOB-BIOv3.1, , Sindelarova et al., 2021c) are distributed from the Emissions of atmospheric Compounds and Compilation of Ancillary Data (ECCAD) system (https://eccad.aeris-data.fr/, last access: June 2021).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据