4.8 Article

Origin of unusual bandgap shift and dual emission in organic-inorganic lead halide perovskites

期刊

SCIENCE ADVANCES
卷 2, 期 10, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.1601156

关键词

-

资金

  1. King Abdulaziz City for Science and Technology
  2. Swiss National Science Foundation (SNSF)
  3. SNSF [154853, 200020-146645]
  4. National Centres of Competence in Research project MUST
  5. National Centres of Competence in Research project MARVEL
  6. Italian Ministry of Higher Education through the MIUR-PON Netergit grant
  7. Swiss National Supercomputing Centre [s426]
  8. CINECA, Italy, through the Italian SuperComputing Resource Allocation project VIPER
  9. [NRP70]

向作者/读者索取更多资源

Emission characteristics of metal halide perovskites play a key role in the current widespread investigations into their potential uses in optoelectronics and photonics. However, a fundamental understanding of the molecular origin of the unusual blueshift of the bandgap and dual emission in perovskites is still lacking. In this direction, we investigated the extraordinary photoluminescence behavior of three representatives of this important class of photonic materials, that is, CH3NH3PbI3, CH3NH3PbBr3, and CH(NH2)(2)PbBr3, which emerged from our thorough studies of the effects of temperature on their bandgap and emission decay dynamics using time-integrated and time-resolved photoluminescence spectroscopy. The low-temperature (<100 K) photoluminescence of CH3NH3PbI3 and CH3NH3PbBr3 reveals two distinct emission peaks, whereas that of CH(NH2)(2)PbBr3 shows a single emission peak. Furthermore, irrespective of perovskite composition, the bandgap exhibits an unusual blueshift by raising the temperature from 15 to 300 K. Density functional theory and classical molecular dynamics simulations allow for assigning the additional photoluminescence peak to the presence of molecularly disordered orthorhombic domains and also rationalize that the unusual blueshift of the bandgap with increasing temperature is due to the stabilization of the valence band maximum. Our findings provide new insights into the salient emission properties of perovskite materials, which define their performance in solar cells and light-emitting devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据