4.8 Article

An aqueous preoxidation method for monolithic perovskite electrocatalysts with enhanced water oxidation performance

期刊

SCIENCE ADVANCES
卷 2, 期 10, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.1600495

关键词

-

资金

  1. Ministry of Science and Technology of the People's Republic of China [2016YFA0202500]
  2. National Natural Science Foundation of China [21306102, 21422604]
  3. Tsinghua University Initiative Scientific Research Program [20161080166]

向作者/读者索取更多资源

Perovskite oxides with poor conductivity call for three-dimensional (3D) conductive scaffolds to demonstrate their superb reactivities for oxygen evolution reaction (OER). However, perovskite formation usually requires high-temperature annealing at 600 degrees to 900 degrees C in air, under which most of the used conductive frameworks (for example, carbon and metal current collectors) are reductive and cannot survive. We propose a preoxidization coupled electrodeposition strategy in which Co2+ is preoxidized to Co3+ through cobalt Fenton reaction in aqueous solution, whereas the reductive nickel framework is well maintained during the sequential annealing under nonoxidative atmosphere. The in situ-generated Co3+ is inherited into oxidized perovskites deposited on 3D nickel foam, rendering the monolithic perovskite electrocatalysts with extraordinary OER performance with an ultralow overpotential of 350 mV required for 10 mA cm(-2), a very small Tafel slope of 59 mV dec(-1), and superb stability in 0.10 M KOH. Therefore, we inaugurate a unique strategy for in situ hybridization of oxidative active phase with reductive framework, affording superb reactivity of perovskite electrocatalyst for efficient water oxidation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据