4.8 Article

Computational multiheterodyne spectroscopy

期刊

SCIENCE ADVANCES
卷 2, 期 11, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.1601227

关键词

-

资金

  1. Defense Advanced Research Projects Agency from the Aviation and Missile Research, Development, and Engineering Center [W31P4Q-16-1-0001]
  2. NSF
  3. Div Of Electrical, Commun & Cyber Sys
  4. Directorate For Engineering [1505733] Funding Source: National Science Foundation

向作者/读者索取更多资源

Dual-comb spectroscopy allows for high-resolution spectra to be measured over broad bandwidths, but an essential requirement for coherent integration is the availability of a phase reference. Usually, this means that the combs' phase and timing errors must be measured and either minimized by stabilization or removed by correction, limiting the technique's applicability. We demonstrate that it is possible to extract the phase and timing signals of a multi-heterodyne spectrum completely computationally, without any extra measurements or optical elements. These techniques are viable even when the relative linewidth exceeds the repetition rate difference and can tremendously simplify any dual-comb system. By reconceptualizing frequency combs in terms of the temporal structure of their phase noise, not their frequency stability, we can greatly expand the scope of multiheterodyne techniques.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据