4.8 Article

Smart optical coherence tomography for ultra-deep imaging through highly scattering media

期刊

SCIENCE ADVANCES
卷 2, 期 11, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.1600370

关键词

-

资金

  1. Labex WIFI (Laboratory of Excellence within the French Program Investments for the Future) [ANR-10-LABX-24, ANR-10-IDEX-0001-02 PSL*]
  2. French Direction Generale de l'Armement (DGA)
  3. Labex WIFI
  4. European Research Council (ERC Synergy HELMHOLTZ)
  5. High Council for Scientific and Technological Cooperation between France and Israel [29704SC]

向作者/读者索取更多资源

Multiple scattering of waves in disordered media is a nightmare whether it is for detection or imaging purposes. So far, the best approach to get rid of multiple scattering is optical coherence tomography. This basically combines confocal microscopy and coherence time gating to discriminate ballistic photons from a predominant multiple scattering background. Nevertheless, the imaging-depth range remains limited to 1 mm at best in human soft tissues because of aberrations and multiple scattering. We propose a matrix approach of optical imaging to push back this fundamental limit. By combining a matrix discrimination of ballistic waves and iterative time reversal, we show, both theoretically and experimentally, an extension of the imaging-depth limit by at least a factor of 2 compared to optical coherence tomography. In particular, the reported experiment demonstrates imaging through a strongly scattering layer from which only 1 reflected photon out of 1000 billion is ballistic. This approach opens a new route toward ultra-deep tissue imaging.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据