4.7 Review

A mini-review on ZnIn2S4-Based photocatalysts for energy and environmental application

期刊

GREEN ENERGY & ENVIRONMENT
卷 7, 期 2, 页码 176-204

出版社

KEAI PUBLISHING LTD
DOI: 10.1016/j.gee.2020.12.015

关键词

ZnIn2S4; Photocatalysis; Modification strategy; Energy conversion; Environmental remediation

资金

  1. National Key R&D Program of China [2020YFC1808401]
  2. National Natural Science Foundation of China [22078213, 21938006, 51973148, 21776190]
  3. cutting-edge technology basic research project of Jiangsu [BK20202012]
  4. Priority Ac-ademic Program Development of Jiangsu Higher Education Institutions (PAPD)

向作者/读者索取更多资源

Semiconductor photocatalysis is considered as an attractive and eco-friendly technology for addressing global energy shortage and environmental pollution. Zinc indium sulfide (ZnIn2S4) has gained research attention due to its excellent visible light absorption, high chemical durability, and low cost. However, the photocatalytic activity of pristine ZnIn2S4 is limited by its narrow visible light absorption range and fast recombination rate of electrons and holes. Various modification strategies have been developed to enhance the photocatalytic performance of ZnIn2S4 materials. This review summarizes recent progress in the construction of highly active ZnIn2S4-based photocatalysts and critically reviews their applications in hydrogen evolution, carbon dioxide photoreduction, and water pollution treatment. The current challenges and future prospects for ZnIn2S4 semiconductor photocatalysts are also discussed.
As one of the most attractive and eco-friendly technologies, semiconductor photocatalysis is demonstrated as a potential strategy to solve global energy shortage environmental pollution problems. Regarding semiconductor-based photocatalysts, Zinc indium sulfide (ZnIn2S4) with various morphological structures has become research hotspots owing to its superior visible light absorption, high chemical durability and low cost. Nevertheless, the photocatalytic activity of pristine ZnIn2S4 is unsatisfactory due to limited range of visible light absorption and fast recombination rate of light-induced electrons and holes. Different modification strategies, such as metal deposition, element doping, vacancy engineering and semiconductor combination, have been systematically developed for enhancing the photocatalytic performance of ZnIn2S4 materials. In order to promote further developments of ZnIn2S4 in photocatalytic applications, this mini-review summarizes the progress of recent research works for the construction of highly activity ZnIn2S4-based photocatalysts for the first time. In addition, the typical applications of ZnIn2S4-based photocatalytic materials have been critically reviewed and described such as in hydrogen evolution from photocatalytic water splitting, carbon dioxide photoreduction, and treatment of water pollution. The current challenges and further prospects for the development of ZnIn2S4 semiconductor photocatalysts are finally pointed out. (C) 2021 Institute of Process Engineering, Chinese Academy of Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据