4.7 Article

Quantum signatures of gravity from superpositions of primordial massive particles

期刊

PHYSICAL REVIEW D
卷 105, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.105.043505

关键词

-

资金

  1. NSFC Excellent Young Scientist (EYS) Scheme (Hong Kong and Macau) [12022516]
  2. National Research Foundation (Singapore)
  3. Ministry of Education (Singapore)
  4. Oxford Martin School
  5. John Templeton Foundation
  6. EPSRC (UK)
  7. Wolfson College, University of Oxford

向作者/读者索取更多资源

This study examines the superposition of primordial massive particles and calculates the associated decoherence time scale in the radiation dominated Universe. The findings demonstrate that lighter primordial particles can persist in a pure quantum state, while heavier particles have limited position uncertainties due to background photons. Furthermore, the study discusses three potential observational signatures that may arise from the quantum superposition of primordial particles, such as interference effects, transition lines in the gravitational wave spectrum, and evidence of quantum entanglement.
We study the superposition of primordial massive particles and compute the associated decoherence time scale in the radiation dominated Universe. We observe that for lighter primordial particles with masses up to 10(7) kg, the corresponding decoherence timescale is significantly larger than the age of the observable Universe, demonstrating that a primordial particle would persist in a pure quantum state, with its wave function spreading freely. For heavier particles, they can still be in a quantum state while their position uncertainties are limited by the wavelength of background photons. We then discuss three observational signatures that may arise from a quantum superposition of primordial particles such as primordial black holes and other heavy dark matter candidates, namely, interference effects due to superpositions of the metric, transition lines in the gravitational wave spectrum due to gravitationally bound states indicating the existence of gravitons, and witnesses of quantum entanglement between massive particles and of the gravitational field.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据