4.6 Article

Ground-state coherence versus orientation: Competing mechanisms for light-induced magnetic self-organization in cold atoms

期刊

PHYSICAL REVIEW A
卷 105, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.105.023505

关键词

-

资金

  1. CNRS
  2. European Training Network ColOpt (European Union Horizon 2020 programme under the Marie Sklodowska-Curie action) [721465]
  3. Global Engagement Fund of the University of Strathclyde

向作者/读者索取更多资源

We investigate the interaction between two mechanisms for magnetic self-organization in a cloud of cold rubidium atoms. The transitions between different phases, induced by either a weak transverse magnetic field or laser intensity, are observed and characterized. The experimental observations are successfully compared to numerical simulations based on a spin-1 model.
We investigate the interplay between two mechanisms for magnetic self-organization in a cloud of cold rubidium atoms subjected to a retroreflected laser beam. The transition between two different phases, one linked to a spontaneous spatial modulation of the Am = 2 ground-state coherence and the other to that of the magnetic orientation (spin), can be induced by tuning either a weak transverse magnetic field or the laser intensity. We observe both first- and second-order transitions depending on the presence of the magnetic field. The experimental observations are successfully compared to extended numerical simulations based on a spin-1 model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据