4.6 Article

Fundamental limitations on the device-independent quantum conference key agreement

期刊

PHYSICAL REVIEW A
卷 105, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.105.022604

关键词

-

资金

  1. Foundation for Polish Science (IRAP Project ICTQT - EU within Smart Growth Operational Programme) [MAB/2018/5]
  2. European Union from Smart Growth Operational Programme, axis IV: Increasing the research potential (Measure 4.3) [MAB/2018/5]
  3. National Science Center [2015/18/E/ST2/00327]
  4. Universite libre de Bruxelles
  5. European Union [801505]

向作者/读者索取更多资源

In this paper, several general upper bounds on the rate of a key secure against a quantum adversary in the device-independent conference key agreement (DI-CKA) scenario are provided. These bounds include reduced entanglement measures and multipartite secrecy monotones such as reduced c-squashed entanglement. The comparison between the DI-CKA rate and the device-dependent rate is discussed, with examples demonstrating the strict gap inherited from the bipartite gap between device-independent and device-dependent key rates.
We provide several general upper bounds on the rate of a key secure against a quantum adversary in the device-independent conference key agreement (DI-CKA) scenario. They include bounds by reduced entanglement measures and those based on multipartite secrecy monotones such as a multipartite squashed entanglement-based measure, which we refer to as reduced c-squashed entanglement. We compare the latter bound with the known lower bound for the protocol of conference key distillation based on the parity Clauser-Horne-Shimony-Holt game. We also show that the gap between the DI-CKA rate and the device-dependent rate is inherited from the bipartite gap between device-independent and device-dependent key rates, giving examples that exhibit the strict gap.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据