4.6 Article

Magnetic damping of ferromagnetic and exchange resonance modes in a ferrimagnetic insulator

期刊

PHYSICAL REVIEW B
卷 105, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.105.014432

关键词

-

资金

  1. Alexander von Humboldt Foundation

向作者/读者索取更多资源

Understanding damping in magnetic technology is important, and ferrimagnetic materials provide a rich platform for exploring this. This study uses time-resolved magneto-optical Kerr effect to investigate the damping of ferromagnetic and exchange resonance modes in bismuth-doped gadolinium iron garnet.
Understanding the damping is an important fundamental problem with widespread implications in magnetic technology. Ferrimagnetic materials offer a rich platform to explore not only the damping of the ferromagnetic mode, but also the damping of the high-frequency exchange mode very promising for ultrafast devices. Here we use time-resolved magneto-optical Kerr effect to investigate the ferromagnetic and exchange resonance modes and their damping in the bismuth-doped gadolinium iron garnet over a broad range of magnetic fields (0-10 T) and temperatures (50-300 K) including the magnetization and angular compensation points. These two resonance modes are excited via the inverse Faraday effect and unambiguously identified by their distinct frequency dependence on temperature and magnetic field. The temperature-dependent measurements in the external magnetic field H-ext = 2 T revealed that the intrinsic damping of the ferromagnetic mode is always smaller than the one of the exchange modes and both have a maximum near the angular compensation point. These results are fully consistent with recent predictions of atomistic simulations and a theory based on two-sublattice Landau-Lifshitz-Bloch equation. We also demonstrate that the damping of these modes varies differently as a function of H-ext. We explain the observed behaviors by considering the different features of the effective fields defining the precession frequencies of the ferromagnetic and exchange modes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据