3.8 Article

Hypoxia and Hypoxic Exercise Induced Systemic Ros Disrupts the Redox Homeostasis in the Brain

期刊

出版社

LAHORE MEDICAL & DENTAL COLL
DOI: 10.53350/pjmhs22161397

关键词

Hypoxic exercise; Redox homeostasis; Brain; Plasma

向作者/读者索取更多资源

There is no significant effect of hypoxic/normoxic exercise and hypoxia on the redox homeostasis of the brain, but individuals exposed to long-term hypoxia and engaging in normoxic exercise may mitigate the damage caused by hypoxia to the brain.
Aim: We aimed to investigate the overall effects of hypoxic/normoxic exercise and hypoxia on redox status in both systemic circulation and brain, and to prove whether the variations in plasma redox status could affect the brain's own redox homeostasis, vice versa. Methods: We designed hypoxic, normoxic exercise groups with their respective controls. We studied on redox status biomarkers i.e., hydroperoxide, low molecular weight thiols, protein thiols, total thiols, and advanced oxidation protein products in frontal cortex; total antioxidant and total oxidant status in the plasma. Results: There is no statistically significant difference observed in redox homeostasis of the brain after hypoxic and/or normoxic exercise or hypoxia itself with an increased systemic oxidant status. Conclusions: Live in hypoxia and exercise at normoxia might diminish the hazardous effect of ROS on the brain at hypoxia. From our findings, thiols, which are the indicators of the antioxidant power of the brain, are found to be protected in groups that are exposed to long-term hypoxia and exercise at normoxia. It might be possible that people who are exposed to hypoxia will be least affected by this damage with normoxic exercise, or even will not be affected at all.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据