4.6 Article

Nonclassical light from finite-range interactions in a two-dimensional quantum mirror

期刊

PHYSICAL REVIEW B
卷 105, 期 7, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.105.075307

关键词

-

资金

  1. EU [800942640378]
  2. DFG [SPP1929]
  3. Carlsberg Foundation through the Semper Ardens Research Project QCooL
  4. DNRF through the Center for Complex Quantum Systems [DNRF156]
  5. NSF
  6. Smithsonian Astrophysical Observatory
  7. NSF through the CUA PFC
  8. DOE [DESC0020115]

向作者/读者索取更多资源

Excitons in a semiconductor monolayer can reflect resonant light with high efficiency, and this study investigates the nonlinear optical properties of these excitonic mirrors. The research shows that interactions between excitons can generate highly nonclassical light, with two different scenarios described. The findings suggest promising applications in quantum photonics at the individual photon level.
Excitons in a semiconductor monolayer form a collective resonance that can reflect resonant light with extraordinarily high efficiency. Here, we investigate the nonlinear optical properties of such atomistically thin mirrors and show that finite-range interactions between excitons can lead to the generation of highly nonclassical light. We describe two scenarios, in which optical nonlinearities arise either from direct photon coupling to excitons in excited Rydberg states or from resonant two-photon excitation of Rydberg excitons with finite-range interactions. The latter case yields conditions of electromagnetically induced transparency and thereby provides an efficient mechanism for single-photon switching between high transmission and reflectance of the monolayer, with a tunable dynamical timescale of the emerging photon-photon interactions. Remarkably, it turns out that the resulting high degree of photon correlations remains virtually unaffected by Rydberg-state decoherence, in excess of nonradiative decoherence observed for ground-state excitons in two-dimensional semiconductors. This robustness to imperfections suggests a promising approach to quantum photonics at the level of individual photons.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据