4.5 Article

Structural basis of haem-iron acquisition by fungal pathogens

期刊

NATURE MICROBIOLOGY
卷 1, 期 11, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/NMICROBIOL.2016.156

关键词

-

资金

  1. Israel Science Foundation
  2. Ministry of Health's Chief Scientist Office
  3. European Union's Seventh Framework Programme [330879-MC-CHOLESTRUCTURE]

向作者/读者索取更多资源

Pathogenic microorganisms must cope with extremely low free-iron concentrations in the host's tissues. Some fungal pathogens rely on secreted haemophores that belong to the Common in Fungal Extracellular Membrane (CFEM) protein family, to extract haem from haemoglobin and to transfer it to the cell's interior, where it can serve as a source of iron. Here we report the first three-dimensional structure of a CFEM protein, the haemophore Csa2 secreted by Candida albicans. The CFEM domain adopts a novel helical-basket fold that consists of six alpha-helices, and is uniquely stabilized by four disulfide bonds formed by its eight signature cysteines. The planar haem molecule is bound between a flat hydrophobic platform located on top of the helical basket and a peripheral N-terminal 'handle' extension. Exceptionally, an aspartic residue serves as the CFEM axial ligand, and so confers coordination of Fe3+ haem, but not of Fe2+ haem. Histidine substitution mutants of this conserved Asp acquired Fe2+ haem binding and retained the capacity to extract haem from haemoglobin. However, His-substituted CFEM proteins were not functional in vivo and showed disturbed haem exchange in vitro, which suggests a role for the oxidation-state-specific Asp coordination in haem acquisition by CFEM proteins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据