4.6 Article

Unveiling the Kondo cloud: Unitary renormalization-group study of the Kondo model

期刊

PHYSICAL REVIEW B
卷 105, 期 8, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.105.085119

关键词

-

资金

  1. CSIR, Government of India
  2. IISER Kolkata
  3. JNCASR
  4. SERB [EMR/2017/005398]

向作者/读者索取更多资源

This study uses the URG method to analyze the single-channel Kondo model, revealing an increase in entanglement and correlations within the Kondo cloud as the flow progresses. The findings show an increase in entanglement between the impurity and cloud electrons towards the Kondo-singlet ground state, as well as an increase in both number diagonal and off-diagonal correlations within the conduction cloud.
We analyze the single-channel Kondo model using the recently developed unitary renormalization-group (URG) method and obtain a comprehensive understanding of the Kondo screening cloud. The fixed-point low-energy Hamiltonian enables the computation of a plethora of thermodynamic quantities (specific heat, susceptibility, Wilson ratio, etc.) as well as spectral functions, all of which are found to be in good agreement with known results. By integrating out the impurity, we obtain an effective Hamiltonian for the excitations of the electrons comprising the Kondo cloud. This is found to contain both k-space number diagonal (Fermi liquid) and off-diagonal four-fermion scattering terms. Our conclusions are reinforced by a URG study of the two-particle entanglement and many-body correlations among members of the Kondo cloud and impurity. The entanglement between the impurity and a cloud electron, as well as between any two cloud electrons, is found to increase under flow towards the singlet ground state at the strong-coupling fixed point. Both the number diagonal and off-diagonal correlations within the conduction cloud are also found to increase as the impurity is screened under the flow, and the latter are found to be responsible for the macroscopic entanglement of the Kondo-singlet ground state. The URG flow enables an analytic computation of the phase shifts suffered by the conduction electrons at the strong-coupling fixed point. This reveals an orthogonality catastrophe between the local-moment and strong-coupling ground states and is related to a change in the Luttinger volume of the conduction bath under the crossover to strong coupling. Our results offer fresh insight into the nature of the emergent many-particle entanglement within the Kondo cloud and pave the way for further investigations in more exotic contexts such as the fixed point of the overscreened multichannel Kondo problem.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据