4.6 Article

Multi-shelled metal oxides prepared via an anion-adsorption mechanism for lithium-ion batteries

期刊

NATURE ENERGY
卷 1, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NENERGY.2016.50

关键词

-

资金

  1. National Natural Science Foundation of China [51172235, 21203201, 51202248, 21201167, 51272165, 51372245, 51302266, 51472244, 51572261, 21401199, 51362024, 21590795]
  2. National Science Fund for Distinguished Young Scholars [21325105]
  3. Australian Research Council (ARC) [160104817]

向作者/读者索取更多资源

One of the major problems in the development of lithium-ion batteries is the relatively low capacity of cathode materials compared to anode materials. Owing to its high theoretical capacity, vanadium oxide is widely considered as an attractive cathode candidate. However, the main hindrances for its application in batteries are its poor capacity retention and low rate capability. Here, we report the development of multi-shelled vanadium oxide hollow microspheres and their related electrochemical properties. In contrast to the conventional cation-adsorption process, in which the metal cations adsorb on negatively charged carbonaceous templates, our approach enables the adsorption of metal anions. We demonstrate controlled syntheses of several multi-shelled metal oxide hollow microspheres. In particular, the multi-shelled vanadium oxide hollow microspheres deliver a specific capacity of 447.9 and 402.4mAhg(-1) for the first and 100th cycle at 1,000mAg(-1), respectively. The significant performance improvement offers the potential to reduce the wide capacity gap often seen between the cathode and anode materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据