4.6 Article

Tunable covalent organic framework electrochemiluminescence from non-electroluminescent monomers

期刊

CELL REPORTS PHYSICAL SCIENCE
卷 3, 期 2, 页码 -

出版社

CELL PRESS
DOI: 10.1016/j.xcrp.2021.100630

关键词

-

资金

  1. National Natural Science Founda-tion of China [22036003, 21775065, 21976077, 21964011]

向作者/读者索取更多资源

The conjugated organic frameworks with trithiophene (BTT-COFs) have been found to have high ECL efficiencies even without exogenous co-reactants. Substituting the monomers with different properties allows for modulation of ECL performance. The cyano group in the framework provides sites for post-functionalization.
It is hard to find new electrochemiluminescence (ECL) luminophores using existing research strategies, especially from ECL non-active monomers. Here, fully conjugated covalent organic frameworks with trithiophene (BTT-COFs) are found to have ultra-high ECL efficiencies (up to 62.2%), even in water and without exogenous co-reactants. Quantum chemistry calculations confirm that the periodic BTT-COFs arrays promote intramolecular electron transfer generating ECL from non-ECL monomers. Modulation of ECL performance is possible by substituting the monomers for those with different electron-withdrawing properties. In addition, the cyano group weaved in the skeleton provides the dense sites for post-functionalization. As a typical use case, a highly selective ECL probe for uranyl ions is reported. The tunable ECL luminophore family possesses a broader development space than the traditional emitters, demonstrates the prospects of ECL-COFs, and affords an idea for detecting various contaminants through the rational design of target ligands.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据