4.8 Article

Rapid radiation in a highly diverse marine environment

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.2020457119

关键词

adaptive radiation; genomic architecture; marine; Hypoplectrus; reef fishes

资金

  1. Smithsonian Institute for Biodiversity Genomics and Global Genome Initiative Grants Program
  2. German Research Foundation [PU571/1-1]

向作者/读者索取更多资源

This study presents a striking example of rapid radiation in a highly diverse marine habitat. The analysis suggests that color pattern diversity is generated by different combinations of alleles at a few large-effect loci. The findings provide important insights for understanding the drivers of adaptive radiation.
Rapid diversification is often observed when founding species invade isolated or newly formed habitats that provide ecological opportunity for adaptive radiation. However, most of the Earth's diversity arose in diverse environments where ecological opportunities appear to be more constrained. Here, we present a striking example of a rapid radiation in a highly diverse marine habitat. The hamlets, a group of reef fishes from the wider Caribbean, have radiated into a stunning diversity of color patterns but show low divergence across other ecological axes. Although the hamlet lineage is similar to 26 My old, the radiation appears to have occurred within the last 10,000 generations in a burst of diversification that ranks among the fastest in fishes. As such, the hamlets provide a compelling backdrop to uncover the genomic elements associated with phenotypic diversification and an excellent opportunity to build a broader comparative framework for understanding the drivers of adaptive radiation. The analysis of 170 genomes suggests that color pattern diversity is generated by different combinations of alleles at a few large-effect loci. Such a modular genomic architecture of diversification has been documented before in Heliconius butterflies, capuchino finches, and munia finches, three other tropical radiations that took place in highly diverse and complex environments. The hamlet radiation also occurred in a context of high effective population size, which is typical of marine populations. This allows for the accumulation of new variants through mutation and the retention of ancestral genetic variation, both of which appear to be important in this radiation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据