4.7 Article

Global Analysis of Biomineralization Genes in Magnetospirillum magneticum AMB-1

期刊

MSYSTEMS
卷 7, 期 1, 页码 -

出版社

AMER SOC MICROBIOLOGY

关键词

magnetotactic bacteria; biomineralization; RB-TnSeq

资金

  1. U.S. Department of Energy, Office of Science, Office of Biological & Environmental Research [DE-AC02-05CH11231]
  2. NIH [R35GM127114]
  3. Miller Institute for Basic Research in Science
  4. Molecular Basis of Cell Function Training Grant [T32GM007232]

向作者/读者索取更多资源

This study used an unbiased approach to investigate the key genes in magnetotactic bacteria (MTB) under different growth conditions. The results revealed the impact of growth conditions on the required genes for biomineralization and provided more understanding of the roles of MamT and other magnetosome gene island (MAI) genes in magnetosome formation.
Magnetotactic bacteria (MTB) are a phylogenetically diverse group of bacteria remarkable for their ability to biomineralize magnetite (Fe3O4) or greigite (Fe3S4) in organelles called magnetosomes. The majority of genes required for magnetosome formation are encoded by a magnetosome gene island (MAI). Most previous genetic studies of MTB have focused on the MAI, using screens to identify key MAI genes or targeted genetics to isolate specific genes and their function in one specific growth condition. This is the first study that has taken an unbiased approach to look at many different growth conditions to reveal key genes both inside and outside the MAI. Here, we conducted random barcoded transposon mutagenesis (RB-TnSeq) in Magnetospirillum magneticum AMB-1. We generated a library of 184,710 unique strains in a wild-type background, generating -34 mutant strains for each gene. RB-TnSeq also allowed us to determine the essential gene set of AMB-1 under standard laboratory growth conditions. To pinpoint novel genes that are important for magnetosome formation, we subjected the library to magnetic selection screens under varied growth conditions. We compared biomineralization under standard growth conditions to biomineralization under high-iron and anaerobic conditions, respectively. Strains with transposon insertions in the MAI gene mamT had an exacerbated biomineralization defect under both high-iron and anaerobic conditions compared to standard conditions, adding to our knowledge of the role of MamT in magnetosome formation. Mutants in an ex-MAI gene, amb4151, are more magnetic than wild-type cells under anaerobic conditions. All three of these phenotypes were validated by creating a markerless deletion strain of the gene and evaluating with TEM imaging. Overall, our results indicate that growth conditions affect which genes are required for biomineralization and that some MAI genes may have more nuanced functions than was previously understood. IMPORTANCE Magnetotactic bacteria (MTB) are a group of bacteria that can form nano sized crystals of magnetic minerals. MTB are likely an important part of their ecosystems, because they can account for up to a third of the microbial biomass in an aquatic habitat and consume large amounts of iron, potentially impacting the iron cycle. The ecology of MTB is relatively understudied; however, the cell biology and genetics of MTB have been studied for decades. Here, we leverage genetic studies of MTB to inform environmental studies. We expand the genetic toolset for studying MTB in the lab and identify novel genes, or functions of genes, that have an impact on biomineralization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据