4.6 Article

PGE2 activates EP4 in subchondral bone osteoclasts to regulate osteoarthritis

期刊

BONE RESEARCH
卷 10, 期 1, 页码 -

出版社

SPRINGERNATURE
DOI: 10.1038/s41413-022-00201-4

关键词

-

资金

  1. National Key Research and Development Program of China [2020YFC2002800, 2018YFC1105102]
  2. National Natural Science Foundation of China [91949127, 92168204]
  3. Fundamental Research Funds for the Central Universities [22120210586]

向作者/读者索取更多资源

The study reveals the important role of PGE2/EP4 signaling in osteoclasts in promoting the progression of OA and related pain. Inhibition of EP4 with the novel antagonist HL-43 shows therapeutic potential in alleviating disease progression and pain in OA.
Prostaglandin E2 (PGE2), a major cyclooxygenase-2 (COX-2) product, is highly secreted by the osteoblast lineage in the subchondral bone tissue of osteoarthritis (OA) patients. However, NSAIDs, including COX-2 inhibitors, have severe side effects during OA treatment. Therefore, the identification of novel drug targets of PGE2 signaling in OA progression is urgently needed. Osteoclasts play a critical role in subchondral bone homeostasis and OA-related pain. However, the mechanisms by which PGE2 regulates osteoclast function and subsequently subchondral bone homeostasis are largely unknown. Here, we show that PGE2 acts via EP4 receptors on osteoclasts during the progression of OA and OA-related pain. Our data show that while PGE2 mediates migration and osteoclastogenesis via its EP2 and EP4 receptors, tissue-specific knockout of only the EP4 receptor in osteoclasts (EP4(LysM)) reduced disease progression and osteophyte formation in a murine model of OA. Furthermore, OA-related pain was alleviated in the EP4(LysM) mice, with reduced Netrin-1 secretion and CGRP-positive sensory innervation of the subchondral bone. The expression of platelet-derived growth factor-BB (PDGF-BB) was also lower in the EP4(LysM) mice, which resulted in reduced type H blood vessel formation in subchondral bone. Importantly, we identified a novel potent EP4 antagonist, HL-43, which showed in vitro and in vivo effects consistent with those observed in the EP4(LysM) mice. Finally, we showed that the G alpha s/PI3K/AKT/MAPK signaling pathway is downstream of EP4 activation via PGE2 in osteoclasts. Together, our data demonstrate that PGE2/EP4 signaling in osteoclasts mediates angiogenesis and sensory neuron innervation in subchondral bone, promoting OA progression and pain, and that inhibition of EP4 with HL-43 has therapeutic potential in OA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据