4.6 Article

Building a Fault-Tolerant Quantum Computer Using Concatenated Cat Codes

期刊

PRX QUANTUM
卷 3, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PRXQuantum.3.010329

关键词

-

向作者/读者索取更多资源

This paper presents a comprehensive architectural analysis for a fault-tolerant quantum computer based on cat codes combined with outer quantum error-correcting codes. The hardware proposed is a system of acoustic resonators coupled to superconducting circuits with a two-dimensional layout. Through detailed error analysis and numerical simulations, realistic estimates of the physical error rates and overheads needed to run fault-tolerant quantum algorithms are obtained. The study finds that with around 1000 superconducting circuit components, it is possible to construct a fault-tolerant quantum computer capable of running circuits currently intractable for classical computers.
We present a comprehensive architectural analysis for a proposed fault-tolerant quantum computer based on cat codes concatenated with outer quantum error-correcting codes. For the physical hardware, we propose a system of acoustic resonators coupled to superconducting circuits with a two-dimensional layout. Using estimated physical parameters for the hardware, we perform a detailed error analysis of measurements and gates, including CNOT and Toffoli gates. Having built a realistic noise model, we numerically simulate quantum error correction when the outer code is either a repetition code or a thin rectangular surface code. Our next step toward universal fault-tolerant quantum computation is a protocol for fault-tolerant Toffoli magic state preparation that significantly improves upon the fidelity of physical Toffoli gates at very low qubit cost. To achieve even lower overheads, we devise a new magic state distillation protocol for Toffoli states. Combining these results together, we obtain realistic full-resource estimates of the physical error rates and overheads needed to run useful fault-tolerant quantum algorithms. We find that with around 1000 superconducting circuit components, one could construct a fault-tolerant quantum computer that can run circuits, which are currently intractable for classical computers. Hardware with 18 000 superconducting circuit components, in turn, could simulate the Hubbard model in a regime beyond the reach of classical computing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据