4.6 Article

Precision-engineered niche for directed differentiation of MSCs to lineage-restricted mineralized tissues

期刊

JOURNAL OF TISSUE ENGINEERING
卷 13, 期 -, 页码 -

出版社

SAGE PUBLICATIONS INC
DOI: 10.1177/20417314211073934

关键词

Stem cells; electrospinning; nanofiber scaffolds; dentin; bone; TGF-beta 1; BMP-4

资金

  1. University at Buffalo

向作者/读者索取更多资源

The study demonstrates the efficacy of a modular combinatorial scaffold system in promoting MSC adhesion and proliferation for dentin regeneration. The scaffold system selectively induces differentiation into either dentin or bone, offering a promising approach for preserving tooth pulp vitality.
The major difference between tissue healing and regeneration is the extent of instructional cues available to precisely direct the biological response. A classic example is reparative or osteodentin that is seen in response to physicochemical injury to the pulp-dentin complex. Dentin regeneration can direct the differentiation of dental stem cells using concerted actions of both soluble (biomolecules, agonists, and antagonists) and insoluble (matrix topology) cues. The major purpose of this study was to examine the synergistic combination of two discrete biomaterial approaches by utilizing nanofiber scaffolds in discrete configurations (aligned or random) with incorporated polymeric microspheres capable of controlled release of growth factors. Further, to ensure appropriate disinfection for clinical use, Radio-Frequency Glow Discharge (RFGD) treatments were utilized, followed by seeding with a mesenchymal stem cell (MSC) line. SEM analysis revealed electrospinning generated controlled architectural features that significantly improved MSC adhesion and proliferation on the aligned nanofiber scaffolds compared to randomly oriented scaffolds. These responses were further enhanced by RFGD pre-treatments. These enhanced cell adhesion and proliferative responses could be attributed to matrix-induced Wnt signaling that was abrogated by pre-treatments with anti-Wnt3a neutralizing antibodies. Next, we incorporated controlled-release microspheres within these electrospun scaffolds with either TGF-beta 1 or BMP4. We observed that these scaffolds could selectively induce dentinogenic or osteogenic markers (DSPP, Runx2, and BSP) and mineralization. This work demonstrates the utility of a novel, modular combinatorial scaffold system capable of lineage-restricted differentiation into bone or dentin. Future validation of this scaffold system in vivo as a pulp capping agent represents an innovative dentin regenerative approach capable of preserving tooth pulp vitality.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据